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Abstract--Results of the mathematical modelling of a two-phase turbulent pipe-jet flow carrying fine solid 
particles are presented. The numerical results are compared with experimental data obtained in our 
laboratory. The purpose of the joint study of these flows is connected with the efforts to explain the 
pinch-effect experimentally discovered by Laats and Frishman (1970) and Navoznov et al. (1979) (for the 
motion of fine solid particles in a jet). It is associated with the growth of particle mass concentration along 
the jet axis with its maximum at some distance from the outlet of the pipe. The effect of intensive scattering 
of large particles in the initial region of the two-phase turbulent jet was also discovered in those 
experimental investigations. The theoretical analysis made by Kartushinsky (1984) showed that these 
effects are linked not only with the properties of the motion of particles of different size in the turbulent 
jet, but also with the prehistory of the motion of such particles in a pipe. 

Our calculations of the pipe-jet flow provide an opportunity to trace the development of the particle 
mass concentration and the velocity fields in the pipe and jet, excluding the necessity for artificially given 
initial boundary conditions in the jet for modelling the pinch-effect. The peculiarity of this simulation is 
in the closure of the equations of the motion of the dispersed phase. The inter-particle collisions in 
polydispersed flows are considered, since in real two-phase flows the dispersed admixture itself is a 
polydispersed medium and, thus, the inter-particle collisions play a significant role together with the 
turbulent diffusion of particles in modelling. The so-called pseudo-viscosity coefficients are introduced in 
the transport equations of mass, momentum and angular momentum of the dispersed phase for modelling 
the inter-particle collisions. The formulae for pseudo-viscosity coefficients take into account the properties 
of the particle motion (the linear and angular velocities and mass concentration of the dispersed phase), 
their relaxation features as well as collision parameters (the restitution and friction coefficients). The 
system of equations for the motion of each particle fraction is written and solved for a pipe-jet flow. The 
exchange of the momentum in the fluctuating motion of the gaseous and dispersed phases is taken into 
account together with the inter-particle collisions. Such exchange of the momentum results to the 
additional force factors--the Reynolds stresses in the dispersed phase (Shraiber et al. 1990). Besides, the 
viscous drag force, the Magnus and Saffman lift forces and the turbophoresis force due to the velocity 
lag as well as non-uniform distribution of the average and the fluctuating velocities of gaseous phase are 
also taken into account in the model. Only due to the consideration of all these factors it has been possible 
to simulate the pinch-effect in a two-phase jet. The numerical results are in good agreement with the 
experimental data for the pipe and jet flow. © 1997 Elsevier Science Ltd. 

Key Words: pipe-jet flow, modelling, inter-particle collisions, pinch-effect, turbophoresis force, 
pseudo-viscosity coefficients 

1. I N T R O D U C T I O N  

An attempt of mathematical describing of the peculiarities of the particle mass concentration in 
the turbulent motion of fine solid particles in the pipe-jet flow by numerical calculation is presented. 
The numerical results are compared with the experimental data obtained in our laboratory. The 
anomalous behaviour of distributions of the particle mass concentration were experimentally found 
by Laats and Frishman (1970) and Navoznov et al. (1979) in a two-phase free round turbulent 
jet. The pinch-effect is associated with the growth of particle mass concentration along the axis 
of the jet and observed for the motion of fine solid particles in the initial development stage of 
the jet. For the motion of large particles, the scattering effect, which is expressed by steep 
attenuation of the particle mass concentration in the initial stage of the jet development was also 
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observed. The experimental investigations showed also the distribution of particle mass 
concentration with wavy profile along the axis. The particles are scattered in the initial stage of 
the jet development and concentrated downstream the flow. Far away from the pipe outlet in the 
fully developed region of the jet, the particles become scattered again due to the turbulent diffusion. 
The experiments showed that with the increase of the particle size the pinch-effect transformed 
gradually into the scattering effect. The analysis of the admixture motion in a pipe and jet showed 
close inter-dependence of both effects--the pinch-effect and the scattering effect due to the motion 
characteristics resulting from different particle size. So, the scattering effect in a two-phase jet is 
accompanied by the motion of large solid particles in the pipe with the substantial velocity lag 
between the gaseous and dispersed phases (Hussainov et al. 1996). The pinch-effect can be observed 
for the motion of fine solid particles with practically zero velocity lag between two phases in the 
pipe (Laats and Frishman 1970; Navoznov et al. 1979). At that time there was practically only 
one theoretical article where an attempt of explaining these anomalous effects was made. 
Kartushinsky (1984) showed that for the description of these anomalies the migration process 
should be included together with the turbulent transport of solid particles in a two-phase turbulent 
jet. It was assumed that the only reason for the emergence of anomaly was the Magnus force having 
impact on rotating particles, which moved with a velocity lag. This article demonstrated 
successfully by numerical calculations that for the definite values of the flow parameters at the 
outlet of the pipe the experimentally observed anomalies could be described well when neglecting 
the hypothesis of the velocity equilibrium for gaseous and dispersed phases in the radial direction. 
At that time such hypothesis was used by many authors (Abramovich et al. 1972; Vasilkov 1976: 
Melville and Bray 1979). The difficulty of the numerical task (Kartushinsky 1984) was stipulated 
by the lack of necessary information about the angular velocity distribution as well as radial 
velocity components of the particles at the outlet of the pipe. Such distributions were taken from 
the numerical results, which were in good agreement with the experimental data. Kartushinsky 
(1984) came to the conclusion that for the proper modelling of the pinch and scattering effects, 
calculations of the pipe-jet flow were necessary in order to define the initial boundary conditions 
for the two-phase turbulent jet correctly, in particular for the angular velocity of particles, which 
could be neither calculated nor measured at that time. The given calculations of the two-phase 
turbulent pipe-jet flow allow to trace the development of the flow in the pipe and jet and determine 
the parameters at the outlet of the pipe as well. 

In 1970-1973 several articles (Laats and Frishman 1970; Hetsroni and Sokolov 1971; Laats and 
Frishman 1973) were published where the effect of the turbulence attenuation by particles was 
experimentally discovered. These works initiated the elaboration of models describing such 
influence of the dispersed phase on turbulence. Based on the Prandtl's theory, Abramovich (1970) 
found a relation for fluctuating velocities of the gaseous phase where the attenuation of the 
fluctuating velocity of gaseous phase was included. Later, Yarin and Hetsroni (1994a) used the 
same Prandtl's theory and elaborated a model showing the influence of non-uniform distribution 
of the dispersed phase composition (bimodal particle composition) on the turbulence of the carrier 
fluid. It was demonstrated that in such a polydispersed admixture the turbulence intensity might 
be enhanced as well as attenuated compared to the turbulence intensity of the flow carrying 
monodispersed admixture, depending on the ratio of the particle size. Using the two-parameter k ( 
turbulence model, Elghobashi and About-Arab (1983), Shraiber et al. (1990) elaborated some 
closure models for two-phase turbulent flows taking into account two-way coupling. They 
described the effect of turbulence attenuation by introducing additional terms in the differential 
transport equations for the turbulent energy and rate of its dissipation originated from the viscous 
drag force. Yarin and Hetsroni (1994b) suggested a model where the enhancement or attenuation 
of the turbulence intensity was described not only by one parameter-- the correlation of the particle 
size and scale of turbulence, but additionally by three more parameters--the ratio of particle and 
gas densities, the particle Reynolds number and mass loading of the flow. 

As it can be seen from our experimental investigations in a horizontal pipe, in the fully developed, 
steady flow the dispersed phase moved with or without the substantial velocity lag between two 
phases depending on the flow conditions (Navoznov et al. 1979). With large particles flowing in 
the pipe, the velocity lag reached 25% from the velocity of the carrier flow. As our investigations 
showed, the main parameter, which determined such motion with the velocity lag was the Stokes 
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number (Hussainov et al. 1996). The distribution of particle mass concentration in the cross-section 
of such two-phase flows with velocity lag is non-uniform with the maximum value at the axis of 
the pipe (Navoznov et al. 1979). When the particles have very small velocity lag, as for example, 
fine particles, the maximum value of the particle mass concentration in the cross-section is located 
in the vicinity of the pipe wall. The motion of admixture with velocity lag has also been 
experimentally observed in vertical pipe flows (Kramer and Depew 1972; Lee and Durst 1982; Tsuji 
et al. 1984) and channel flows (Kulick et al. 1994). It should be underlined that the profiles of the 
particle mass concentration in experiments were close to uniform with the slight increase of 
concentration towards the wall (Kulick et al. 1994). 

A great number of articles has been devoted to theoretical studies of two-phase flows in pipes 
and channels. In general, there are two different approaches to the description of the motion of 
such two-phase flows--the Lagrange approach (Crowe et al. 1977; Sommerfeld 1992; Sommerfeld 
and Zivkovic 1992) and the Euler approach (Elghobashi and About-Arab 1983; Louge et al. 1991; 
He and Simonin 1993). The main issue in applying the Euler approach is included in the closure 
of transport equations of the dispersed phase and writing the boundary conditions for these 
equations. There are no such problems for the Lagrange approach and here the boundary 
conditions for single particles seem to be more attractive from the physical point of view. Recently, 
Sommerfeld (1992) found the significant influence of the wall roughness on the particle motion in 
a channel. However, to take into account two-way coupling for the Lagrange approach a special 
procedure (Crowe et al. 1977) was elaborated. The method was further developed by Kohnen et al. 

(1994). 
The Euler approach is also widespread in the simulations of two-phase pipe and channel flows. 

Louge et al. (1991), He and Simonin (1993) simulated the motion in two-phase vertical rising flows. 
The difference of these studies is in closure of transport equations of the dispersed phase. Louge 
et al. (1991) used the closure of transport equation based on the theory of rapid granular flows 
(Jenkins and Savage 1983) where the momentum exchange in the dispersed phase was simulated 
by particle collisions. In this model the closure was considered in the equilibrium approximation 
where only one transport equation of the dispersed phase (for the so-called 'granular temperature') 
expressed in terms of the r.m.s, particle velocity fluctuations is applied for the closure, on the 
contrary to the closure presented by He and Simonin (1993) where the transport equations of the 
dispersed phase were written for different stress tensor components. In both studies (Louge et al. 

1991; He and Simonin 1993) the velocity slip of the dispersed phase along the wall was used for 
writing the boundary conditions. 

On the contrary to Louge et al. (1991) and He and Simonin (1993), we consider the algebraic 
closure model for the transport equations of polydispersed solid admixture in the pipe-jet flow in 
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Figure 1. Aerodynamical bench: (1) laser He-Ne; (2) sending optics; (3) receiving optics; (4) test section; 
(5) pressure converter; (6) particle screw feeder; (7) dispersed phase dosimeter; (8) flowmeter; (9) 

thermocontroller; (10) registering processing and controlling system; (11) blower. 



768 F F R I S H M A N  et al. 

( a )  
1 0 0  - -  

8 0  -- 

60 -- 

40 -- 

20 -- 

0 
0 

(c) 
1 0 0  - -  

8 0  - -  

~ -  60 -- 
v 

10 

40 

20 

0 
0 10 

Figure  2. 

(b) 
1 0 0  - -  

I 

20 30 40 50 

80 

60 

40 -- 

20 

I o 
60 0 10 20 

Lm I 
30 40 

(d) 
I 0 0  - -  

8 0  - -  

6 0  -- 

40 -- 

20 - -  

I I I 0 I 

20 30 40 50 60 0 10 

p a r t i c l e  s ize  (I.tm) 

20 30 40 

p a r t i c l e  s ize  (p.m) 

1 I 
50 60 

50 60 

The  particle mass  distr ibut ions for var ious  average  particles diameters:  (a) 6 = 7/~m; 
(b) ~ = 17/~m; (c) 6 = 23/~m; (d) ~ = 3 2 p m .  

our article. Due to the force factors (in our model we consider the drag viscous force, the Magnus 
and Saffman lift forces) and also the turbophoresis force, the obtained radial velocity of the 
dispersed phase differs noticeably from the radial velocity of the gaseous phase. In that case there 
is no need to apply the hypothesis of the velocity equilibrium in the radial direction as it has been 
made by Abramovich et al. (1972), Vasilkov (1976) and Melville and Bray (1979) in the calculations 
of the transfer processes in free round two-phase turbulent jets. The initial conditions for the jet 
are defined by the calculated velocity and concentration fields of both phases in the pipe flow (at 
the outlet of the pipe). By this approach we can describe satisfactorily the pinch-effect of solid 
admixture experimentally found by Laats and Frishman (1970), and Navoznov et al. (1979). 

2. EXPERIMENTAL FACILITY AND TECHNIQUES 

The pinch and scattering effects of the dispersed phase discovered by Laats and Frishman (1970) 
and Navoznov et al. (1979) in a two-phase round turbulent jet were related to the anomalous 
phenomena and could not be explained. Therefore, they were checked repeatedly with applying 
various experimental facilities both in the horizontal and vertical jets using different experimental 
techniques. One of the experimental facilities designed for measurements in a pipe and jet is shown 
in figure 1. In the work by Laats and Frishman (1970) the particle mass flow rate was measured 
by an isokinetic sampling tube with a diameter of 2 mm. The injected air passed through the 
rotameter and solid admixture precipitated on the filter and was then weighed after a definite period 
of time. The gas velocity in various locations of the jet was calculated from the rotameter readings 
and the flow rate of the dispersed phase through the element (specific flow rate kg/s.m 2) was 
measured by weighing the samples. In the work of Navoznov et al. (1979) the relative particle mass 
concentration was determined by the LDA technique. Moreover, in the work of Frishman et al. 
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(1993) the concentration was determined by direct counting of particles, which passed through the 
LDA measuring volume. Nevertheless, the pinch-effect observed for the motion of fine solid 
particles and scattering effect related with the motion of large solid particles were registered in all 
series of experiments. The experimental rig where the investigations in a pipe and jet flow were 
carried out is shown in figure 1. The aerodynamical rig consisted of the following main parts: a 
pipe for the formation and transportation of a two-phase flow and a test section. Besides, the 
aerodynamical rig included a blower, a particle screw feeder and also optical, registering, 
controlling and processing systems. The length of the pipe used in our experiments was about 6 m 
for various pipe diameters (15-35 mm). We conducted our experiments for various mean gas 
velocities of 30-50 m/s. The mass loadings were 0.3-0.62 kg dust/kg air. We investigated two-phase 
flows with 7, 17, 23 and 32/~m manufactured abrasive electrocorundum powders (A1203; 
pp = 3950 kg/m3). Since the physical properties of the dispersed systems depend significantly on the 
fractional composition of powders, it is necessary to know the distributions of particle sizes. The 
analysis of the polydispersity of applied powders shows that the root-mean-square deviation from 
the average particle size for the electrocorundum powder is no more than 30% of middle size of 
the particles. 

The distributions of local averaged parameters (velocity and particle mass concentration) of the 
two-phase flow in various cross-sections of the pipe and jet were measured with the help of a 
forward-scatter laser Doppler anemometer (LDA) and laser concentration measurer (LCM) 
(He-Ne laser, sending and receiving optics in figure 1). The measurements of the particle mass 
concentration were based on measuring the light intensity of the beam scattered at some angle and 
the attenuated direct beam in the optical heterogeneous medium. The optical parts of LDA and 
LCM were installed on a special traversing device controlled by a PC-286. This allowed to scan 
the flow continuously or discretely in any given direction with the accuracy of 0.1 mm. The optical 
system included a 35 mW He-Ne laser. The LDA receiving optics contained two channels: one 
channel was tuned for registering signals from small flow tracers and the second for measuring the 
dispersed phase. Each channel consisted of receiving optics, fiber cable, photomultiplier (PM) and 
a special counter processor. Tuning of channels was based on the amplitude discrimination of the 
Doppler signals. The channel of the dispersed phase was tuned for registering signals only from 
the particles of this phase by selecting the geometry of the reception system and sensitivity of PM. 

3. THE MODEL 

The numerical calculation of the two-phase turbulent pipe-jet flow is based on the Euler approach 
employed for the dispersed phase, which is considered as a multi-velocity continuous phase 
(Nigmatilin's method of space averaging (1990) is applied), since the dispersed phase is considered 
here a polyfractional dispersed phase. The real manufactured powders of solid particles used in 
the experiments of Laats and Frishman (1970) and Navoznov et al. (1979) are made of 
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Figure 3. Distribution of  particle mass  concentration along the diameter at the pipe outlet for the following 
flow conditions: the mean velocity of  gas u = 50 m/s,  the pipe diameter D = 15.2 mm,  the mass loading 

of  0.62 kg dust /kg air for two particle sizes: [] (6 = 23 #m), • (6 = 32 #m). 
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polyfractional dispersed material. Figure 2 shows the particle mass distributions for various mean 
particle diameters (~i = 7, 17, 23 and 32/~m). 

In the mathematical description the distribution of the particle mass concentration against the 
particle size is modelled by the finite number of the fractions characterized by their size, 
concentration. Polydispersity of the solid phase leads to collisions between particles from different 
fractions in their motion. In order to take into account the impact of collisional effect at the motion 
of the polyfractional solid admixture, we introduce the pseudo-viscosity coefficients. For 
simplifying the calculations, the polydispersed phase is modelled by three particle fractions: the 
main fraction (index 2) with a mass contribution of 50% from the total mass of particles of all 
fractions and two additional particle fractions with equal mass fractions (25%). This mass is less 
than that of the main fraction and with the particle size smaller (index 1) and larger (index 3) than 
the particle size of the main fraction. The difference between the particle sizes of fraction 1 and 
fraction 2 is 15%. Between fraction 3 and fraction 2 the difference is 8% of the particle size in 
the main fraction being identical for all considered particles. Therefore, the dispersed phase is 
characterized by the following parameters: the particle sizes of the fractions 6~ < 32 < 63; the 
velocity components us~, vst, u~2, v~2, u~3, vs3 in the axial and radial directions, respectively; the angular 
velocity components co~, cos2, cos3 and mass concentrations ~ ,  ~2, c~. The indices sl, s2, s3 show 
the parameters for different particle fractions, in particular, co~, 0~2, cos3 are the angular velocities 
of fractions 1, 2, 3, respectively. We consider the two-dimensional, axysimmetrical pipe-jet flow 
and vector of the angular velocity has one component, which is oriented to the circumferential 
plane. We write the transport equations for the gaseous and dispersed phases in the approximation 
of the two-phase turbulent boundary layer neglecting the diffusive terms in the main flow direction 
(in our case in the axial direction) and keeping them in the transversal direction. The system of 
the transport equations of mass, momentum (in the axial and radial directions) and angular 
momentum is written for each particle fraction with taking into account the introduced 
pseudo-viscosity coefficients characterizing the additional (collisional) transfer of these substances. 
For  the closure of transport equations of the dispersed phase the eddy-viscosity concept is used. 
The formulae for the pseudo-viscosity coefficients contain the linear and angular velocities and 
mass concentrations of each particle fraction. The formulae for the coefficients are obtained from 
the consideration of binary collision between particles (Chapman and Cowling 1970) and with 
taking into account the probability of the collisions of particles from different fractions (Trushin 
and Lipatov 1963). 

Moreover, we have considered the influence of the turbulent fluctuations of the carrier gas flow 
on the motion of the dispersed phase. The additional terms--in the diffusion coefficient presented 
as a superposition of the diffusion pseudo-viscosity coefficient (originated from the particle 
collision) and the coefficient of the turbulent diffusion of particles in the transport equations of 
the translational momentum in the axial and radial directions and in the transport of the angular 
momentum--describe the influence of the gaseous phase on the motion and distribution of the 
dispersed phase in a pipe and jet. One of the additional terms in the equation of the momentum 
transfer in the radial direction describing the diffusion of the normal component of stress tensor 
of the dispersed phase includes the turbophoresis force, which results from the non-uniform 
distribution of the fluctuation energy of particles. Fletcher (1967) and Fortier (1967) were the first 
to pay attention to this effect. For  the motion of a single particle, the given force was written by 
Gorbis and Spokoinyi (1977) and Mednikov (1981). According to the latter, this force is 

-0.5rap r ~ r\Vp-/. 

The expression for the turbophoresis force written for a single particle with the motion of the 
dispersed phase as whole is transformed using the method of space averaging by Nigmatulin (1990): 

1 a r(v;~).  -0.5p~7~ 

The additional terms in the transport equations of the momentum in the axial direction characterize 
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the influence of that force caused by the turbulent transfer of the shear stress of the dispersed phase 

1 0  
-P '  7 -& r(u;v;) 

and in the transport equation of the angular momentum--the turbulent transfer of the angular 
fluctuating velocity 

1 t~ , , 
- P ' 7  & r(~OpVp). 

They describe the momentum exchange of particles with the carrier flow for the fluctuating motion. 
The formulae for the Euler correlations of the dispersed phase (UpV~), (Vp2), (rOpVp) and for the 
turbulent diffusion coefficient of particles were obtained by Shraiber et al. (1990). The average 
transport equations were written on the basis of the Euler approach, which Shaiber et al. (1990) 

' ' (Vp), QOpVp). They are the following: used for obtaining the correlations of (UpVp), ,2 , , 

(~--'~- -[- Up -~X -]- 1.)p ay up ~ + Vp ~ = 7(u - Up) + 
?o 

[ (u - up) 2 + (v - vp) 21 

X [(U - -  U p ) ( ( U '  - -  Up) 2)  -[- (U - -  U p ) ( ( U  t - -  U p ) ( V  - -  Up)b]  "[- X~o(V - -  Up) (.Op - -  ] t ~ X  x ~yy 

+ 2,,,( (v '-  vl~)(~p- ~\-~l{~v' tgu')~),Oy,],] [l] 

a-7 + u,-~x + " ay + k / k / U ; T x  + v; -gfiy = ~(v - v.) + 
70 

[(b/ - -  Up) 2 "[- (V - -  Vp) 21 

X [(V - -  U p ) ( ( U '  - -  Up)(/)  - -  U p ) )  -'[- (U - -  U p ) ( ( U '  - -  Up)2)]  - -  ~ ( U  - -  Up) ( .Op  2 t ( ~  x ~yy 

- 2 \ ~  tgy .].] [21 

[3] 

where the coefficients are 

18p v fbl ~ "~ 18p v 
~ =  Pp ~--~(1 + b , x ~ p + b z R e p ) ,  70 = Pp ~t-~x/B.ep+b2Rep ,) 

2~ 3__~p 18pv 60p v 
= 4pp' fl - fl~ - 62 pp62' pp 

and Rep is the particle's Reynolds number. The inverse value of fl is the dynamic relaxation time 
of the Stokes particle. Here the numerical constants bl = 0.276 and b2 = 0.139 have been taken 
from Kravtsov's investigations (1968). The variables u, v, up, Vp, e)p are the average translation 
and angular velocities of the gaseous and dispersed phases. On the ground of these equations 
and taking into account the expression for the Euler correlation of velocities of the carrier fluid 
and calculating the trajectory of particles in their fluctuating motion, Shraiber et al. (1990) obtained 
the formulae for sought correlations and for the coefficient of the turbulent diffusion of particles, 
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which are the following: 

,~ = 7,.,,<u-> + 2;,.,.',,,.,~<u'v'> 
<v ;>  7,,(7,.,. + ~,,)  + >,(~'.,., + ~,~) >,,(y.,.,, + ~o~,,)' 

. o .0 ~,o, o 1 , , (?,-~¢,, + ,.,-.,.Y.,.,.)(7~, + 7,., + 2~o,..,) <u ' v ' )  + 
<u~v~> = (> ,  + ~,.,,)(>, + ~o,.,.)(>, + qo,,) (./,~ + >,,,) 

[4] 

X ~,0 ~ 0 ~ . "2 , ,0  ..,o ~, , 2 U t2 ~ ,  ,,.,.(,~ + ),, + qo,..,)< ) ,,-,~,',,A >,  + 7.,.,. + 2~p~)<u ) l  
L ~7-~7(7, :7~ + i>,  + ~o,,)(>, + q,,x) - r  

[5] 

fl,,,V~,.(fl,,,+7,,,+2C,,£o~.,.) (au'v,) 
<oJ;v,;) = 2(fl,,, ~- ~1',',')(~,o ~- Ctlq)r3)('~,3-~- Cll(-~xv) ~-r 

fl,,,,v,(fl, 4- )',, 4- 2 C t l f p , , )  (~u'  

2(j~,u Jr- )'vv)(/~v)-}" Ctlq),;,)(~)y ~- Ctl(~vx) ~7-r u '  ' 
[6] 

O p  = 
2Ct2k 2.5 

3 (5 , Vry 
( ~ , Y l  + ± ~r ~ + 2 k + 1 + \ ~ j  j 2Vr ~\),2.,. ] j j  

270~ ( u ' v ' ) ,  [71 
(p ,..,. y,., 

where )'0, 7 o are the coefficients in the Eulerian and Lagrangian  equat ions of  the f luctuating mot ion  
of  a particle related inversely propor t iona l ly  to the t ime of  the dynamic  relaxation of  Stokes 
particles, respectively; ~0,~ is the exponent  of  the Euler correlat ion of  the gas paramete rs  at the fixed 
point,  its inverse value is the Eulerian integral t ime scale and ¢po is the exponent  of  the correlat ion 
of  the gas paramete rs  a long the particle path,  its inverse value is connected with the Lagrangian  
integral t ime scale. The  coefficients 7o and 7 o are determined as 

o ou_~ ,o &'~ o,o = 7 + 7OUr 0 '/oV; 

The exponents  q~,.~, q%. are determined as ~ox~ = u/AE, qOvy = 2~o~, and it is considered that  ~Oxy ~ ~o,. 
in the model  o f  Shraiber e t  a l .  (1990). Fo r  the jet calculation, the space scale of  turbulence is 
determined as AE = C,2k25/E, where the numerical  constant  C,2 equals to 0.13. In this model  it is 
suggested that  ~o°,. ~ ~o,°,,. where 

and the value ~0 is calculated as 

~o,S = v, v~ 
q) + 0.5 ~ + 2AE V~ 

while the total  velocity difference is Vr = x / (u  - up) 2 + (v - vp) 2. 
According  to the model  by Shraiber e t  al .  (1990), the influence o f  the dispersed phase  on the 

turbulence o f  the carrier  flow has been taken into account  in the addi t ional  terms of  t ranspor t  
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Figure 4. Distribution of  particle mass  concentration and particle velocity in the cross-section of  the pipe 
outlet (x/D = 200) for the following flow conditions: the mean velocity of  gas u = 50 m/s, the pipe 
diameter D = 15.2 mm,  the particle size ~ = 23/ tm,  the mass  loading of  0.62 kg dust/kg air: - - ,  ~t (calc.); 

[[], ~ (exp.); - - ,  us(r)/us(O) (calc.); II ,  us(r)/us(O) (exp.). 

equations for the turbulent energy and the rate of its dissipation (the authors considered the 
two-way coupling), which are the following: 

E [8] 

~ 2psfleCt,q~xx 
~P ~ (C,, ~pxx + fl)' [9] 

Moreover, the viscous drag force, the Magnus and Saffman lift forces are also considered in our 
calculations. The expression for the Saffman force is generalized for the case of particle motion 
in a wide range of the Reynolds number of particles (Mei 1992). The Magnus lift force is the force 
acting on the rotating particles which move with the velocity lag (Rubinow and Keller 1961). The 
particles obtain angular velocities from their interaction with the walls as well as from the gradient 
of the gas velocity. Therefore, the transport equation for the angular momentum of the dispersed 
phase is added to the system of transport equations. In the presented model the influence of the 
gravitational force is insignificant. We consider that the motion of particles is balanced by the 
turbulent diffusion of particles, inter-particle collision effect and the Saffman lift force. The effect 
of particle collision as shown in the work of Sommerfeld and Zivcovic (1992) is important, yielding 
to the re-suspension of particles in a horizontal pipe. In our case for the transport of fine particles 
(7-32 #m) in a horizontal pipe, the settling velocity is lower than the velocity in radial direction 
by the factor of 10-100 resulted from the effect of inter-particle collision, the turbulent diffusion 
of particles and from the Saffman lift force. In addition, as our experiments showed, the profiles 
of particle mass concentration in the cross-section at the pipe outlet are axisymmetrical (figure 3). 
Therefore, we consider the axisymmetrical two-phase motion in the horizontal direction. In our 
calculations the other forces (i.e. Basset force, the force of added mass) are also neglected due to 
the low ratio of gas density to the density of particle material, which is less than 0.001. 

4. EQUATIONS AND BOUNDARY CONDITIONS FOR THE GASEOUS DISPERSED PHASES IN 
THE PIPE AND JET FLOW 

The transport equations of the gaseous and dispersed phases written in the two-phase turbulent 
boundary layer approximation are as follows: 

t~u 1 ~(rv)  
ax + r  ~ 3 ~ - 0 '  [10] 
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c~u O u _  d P  1 O Ou 18pv ~. C(~;o~;(u- u~,) 
u ~ + V  Or p d ~  + r - ~ r r ( v ~ + v )  Or Pp ,=t.3 ~ [ l l ]  

Ok Ok l O r(v, + v) Ok (0U~ 2 ( ~ 2  
U -~x + V Or -- -r O r ~r  + V~t-~r ) -- ~ -- Ep -- 2v 

k U , /  
[12] 

& O~. I O & C,i(.vt(Oukl 2 ~2 " ,  fO2u~ 2 
u ~ x  + v - -  - - r(v, + v) + -- C,2 ~ Cp Or r Or ~r k \0 r , ]  - + zvv't~r2 ) ' 

0(~rus,)  1 0(r~ru~,)  
0x + r Or 

- -  -- - D ," O~;, 1 ~ r(D~; + 
r Or P ) ~ r  

Usi~  + V~ii ~i Or]  Or - r O r  r VJi'-~ -(upi~)pi) 

[13l 

[14] 

+ 4~p [-_24C~;(u- Us;)V ] 
L 6~ - @ - v~,)nr , [15] 

u~,~X- x + v~, . . . .  c~; Or,] Or r Or r V~r ~-r <Vp~ > ks; 

+3-Pp F24Cf i ; (v ' -v~; )v  ( 4" 1 "f(Rep;'Re~;)x/-v ~/~u~ G ' 
L 67 + (u - u~;) f L -  fir X / O r J J  

[16] 

- - - r v3; W - ( ~ ; r V ; , )  usr ~ + vs; ~; O r /  Or r 

where the rotational slip velocity is 

60pv 
pp6~ ~ir, 

k 2 
Yt ~ C , u t - - ~  

E 

llO  o,) 
n, = 2\Ox ~r - o~,, 

and the function 

Re~;'~ // Repi'~ Res; 
f(Rep/, Res,) = 1 - 0.23434 w T - / e x p / - - - ~ !  + 0.23434 w (at Rep; ~< 40), 

l~XTpr// \ l l d / ]  XXCpi 

is determined according to Mei (1992) and 

[17] 

[18] 

f(Rep;, Res;) = 0 .0371x/-~r  (at Repr > 40), 

0U (~2 __L. R e ~ ,  = -~- 
4v' u r  
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v, vt are the kinematic and turbulent viscosity, respectively; p, pp are the gas and the particle 
material densities, respectively. 

In order to obtain the formulae for the pressure gradient and radial velocity of the gaseous phase, 
we solve the continuity equation of  the gaseous phase [10] together with the transport equation 
of  the momentum of this phase [11] using the method by Abramovich et al. (1984) and obtain the 
following expressions: 

£ R I (  0 OU'~dr 18pv£Ro~,C{~i(u-u~i)rdr 
dP -~ ~rr(Vt + V) OrJ - ~  ~ 

, [191 
p dx ~'R r dr 

Jo U 2 

v = -U{r -- £ '1(0_~ _.~rr(Vt+V) Or, ]Ou'~d r +-fi-~dP £"rdr___~_+~pa~18pvf"o~iC{)i(u-usi)rdr}_ff2 . [20] 

We use the k-e turbulence model, including the transport equations of  the turbulent energy [12] 
and its rate of dissipation [13] and an expression for the coefficient of the turbulent viscosity [18]. 
We consider the two-way coupling expressed through the influence of additional forces in the [12] 
and [13]. The additional terms Ep, ~p ([8] and [9]) are given on the right-hand side of these equations, 
respectively. The wall functions Ca, Ca, c,, are determined according to Durst and Rastogi (1972) 
as follows: 

(7,1 = 1.55, C,2 = 2 . (1 -0 .3 .exp( -Re~)) ,  

2.5 
c,t = 0.07.exp 

1 Re[~ +g) 

where the turbulent Reynolds number is Re, = k2/vE. 
Using the eddy-viscosity concept, the stress tensor components for the dispersed phase are 

expressed through the rate of the shearing strain and the introduced pseudo-viscosity coefficients 
given in the diffusive terms of the transport equations [14]-[17] like it was presented by He and 
Simonin (1993): 

0u~i [21] (u~',v,'~ > = - v~i Or ' 

Ov~ 2 
[221 

&osi [23] Qos'vs') = -- vs 3 0r ' 

(~[vs" > = - D~, ~ .  [24] 

Here the fluctuating variables result from the inter-particle collision in the polyfractional dispersed 
flow. The expression [22] is derived from the generalized form of the stress tensor for the normal 
component of  the dispersed phase like in He and Simonin (1993). The parameter k~, describes the 
exchange of kinetic energy between the particles of the ith fraction with the particles from other 
particle fractions of the dispersed phase at their interaction. 

On the right-hand side of transport equations, which are written for each particle fraction (index 
i = 1, 3) for the momentum of the dispersed phase in the axial [15] and radial directions [16] the 
influence of the viscous drag force (the second term), the Magnus and Saffman lift forces (the third 
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and fourth terms) are taken into account. On the right-hand side of the transport  equation of the 
angular momentum of the dispersed phase [17], the second term describes the decay rate of  the 
angular velocity of  particles due to the viscosity of  the surrounding gas (Rubinow and Keller 1961). 
On the right-hand side of  the transport  equations for the mass, momentum and angular momentum 
[14], [15], [16], [17], respectively, the influence of turbulence of the gaseous phase is taken into 
account, which is expressed through the terms for the turbulent diffusion coefficient of  particles 
Dp,, and through the diffusion of the Eulerian correlation (UpiVp,), (vf~), (%tvft) .  All these 
equations are written for the dispersed phase with taking into account the procedure of  space 
averaging by Nigmatulin (1990). 

The fields of  the gaseous phase are calculated along the length of the pipe (L = 50D) up to the 
injection of particles into the pipe. Thus, we have had a fully developed, steady gas flow before 
we started the calculation of the parameters of  the dispersed phase (according to our experiments). 
For  the calculations of  gas fields, the initial conditions are taken similar to Durst and Rastogi 
(1977) with the uniform top hat profiles for the axial velocity component,  for turbulent energy and 
for the dissipation rate of  turbulent energy. The particles enter the pipe with the initial velocity 
given as 15% of the velocity of  the gaseous phase with the uniform distribution in the cross-section. 
The uniform distribution of the particle mass concentration for each fraction is also given in the 
initial cross-section and the radial and angular velocities of  the dispersed phase in the initial field 
are taken zero. Thus, the initial conditions for the parameters of the dispersed phase are as follows: 

x = 0 usi = 0.15'ub-0, ~2 = 0.5"Z, at=~3 = 0.25"Z, v~,= 10 5, cost = 10 -5 . [25] 

The boundary conditions for the gaseous phase are s tandard--non-sl ip  conditions for axial and 
radial velocity components (for the impenetrable wall) and the same as for the turbulent energy 
and its rate of  dissipation. We take symmetry conditions for these parameters at the axis. Thus, 
they are 
at the axis 

at the wall 

0u _ 0k _ 0E _ t ,  [26] 
Or 0r Or r = 0' 

u = v = k = ~l . . . .  0. [27] 

The parameters for the dispersed phase are written with assuming the slip velocity conditions along 
the wall analogous to the theory of rarefied gases (Chapman and Cowling 1970). We consider no 
losses for the particle interaction with the wall (no rebound effect). For the description of the 
motion of large solid particles in a horizontal channel with the slip velocity between the gaseous 
and dispersed phases in the main flow direction, the mathematical model of  the saltating motion 
of large particles was elaborated, which took into account the rebound effect, in addition to the 
other factors (Hussainov et al. 1996). The influence of the restitution and friction coefficients 
describing the particle-wall interaction is estimated in our work as well. As our calculations based 
on that so-called saltating model of  particle motion showed, the rebound effect plays no significant 
role in the motion of fine particles in a horizontal pipe, and therefore we consider that the particles 
slide along the wall without interaction, without friction. We set nonzero velocity conditions at 
the wal l - - the  gradient boundary conditions for the axial and angular velocities of  particles. We 
set impenetrable velocity condition for the radial velocity of  both phases at the wall. For  the particle 
mass concentration, the boundary condition can be obtained from the transport  equation for the 
particle mass if to integrate the particle mass flow rate over the cross-section of  a pipe. So, we can 
write the boundary conditions for the velocities and mass concentration: 
at the axis 

Oust _ 0~, = 0, vsi = CO~ilr = 0 = 0, [28] 
0r Or ,= 0 

at the wall 
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C3Usi 0tOni ~" 
t~--7 w = ~ w = 0; V~,[w = 0; ~V~,[~ = D~, 0~i0r [29] 

The transport equations and boundary conditions for the round turbulent two-phase jet can be 
written then in new coordinates. Since the jet expands, we must transform the widening area into 
the rectangular area as it was done by Krasheninnikov (1972). So, in the new coordinate system 
the transport equations of  both phases can be written using the new variables determined as 
x = Y. R, r/= 6"R, where ~, 6 are the dimensionless variables and 

f r 
q = (1 + T . . f ) - A A '  F = ~  

(R is the pipe radius). The initial conditions for both phases are obtained as a result of the 
calculation of the two-phase flow in the pipe. The boundary conditions for the gaseous phase in 
case of  the round jet are, as follows: 
at the axis 

Ou Ok OE ,1 = o 0q -- Or/ -- Or/ -- V = 0, [30] 

at the outer border of the jet (oo): 

ul~=0.045ul~=0, kl~=10-4(ul~=0) 2, E I~=1 0  -6(u1'=°)3 0 v , =  R ' = 0 .  I311 
ac 

The boundary conditions for the dispersed phase are: 
at the axis 

at the outer border (m): 

us, l~ = 0.045ulr=0, 

Ousi Octi ,i = o 0r/ - c3r/ = 0, vs, = cosi[,=0 = 0, [32] 

0 0 ) s i  ~£ 
v~il~ = -10-Sul,=0, -~q = 0, ct, l~ = 0.045.~t, Iw. [33] 

The jet boundaries are not set beforehand, but are chosen according to the requirement of smooth 
transformation of  the parameters of two-phase flow at the outer boundary of the jet (0o) as by 
Brailovskaja and Chudov (1962). The smooth transformation can be obtained when the following 
condition is satisfied: 

ff~q <~ Ku [r =0, [34] 

where K is the numerical constant and K = 0.05. 
The system of transport equations of  the pipe-jet flow is the system of parabolic equations of 

two-phase turbulent boundary layer. This system can be solved by the numerical tri-diagonal 
matrix algorithm using the implicit scheme by writing the upwind derivations in the radial direction 
and a special form of the source term on the right-hand side of equations (Patankar 1980). We 
used unequal grid spacing in the approximation of  derivatives in the radial direction near the wall. 

5. PSEUDO-VISCOSITY COEFFICIENTS 

For  the definition of the pseudo-viscosity coefficients, let us assume the binary impact of two 
particles. The velocity differences for linear and angular components before and after collision with 
taking into account the recovery coefficients of  such collision k,p, kt0 are presented in appendix A. 
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These velocity differences are considered as a part of the fluctuating velocities of particles originated 
from the inter-particle collisions. For  obtaining the stress tensor components, let us multiply 
different components of fluctuating velocities and average this product over two angles ~p, 0 and 
the parameter Z defining the distance between the particle centers at their impact. The given 
approach with the geometrical interpretation of these variables has been considered by Babukha 
and Shraiber (1972) which the calculations have been made for the two-phase laminar boundary 
layer by Hussainov et  al.  (1995). As a result, we can get the following combinations: 
( ( u ; , ,  - u ~ , ) ( v ; ,  - v = ~ , ) ) l o ~ . o ,  ( ( v ; , ,  - v s , ) = ) l o . ~ . ~ ,  ( ( ~ o ' ,  - c o s , ) ( G  - v ~ , ) ) l o ~ . ~ ,  ( [ ( u ; , j  - u~ , )  ~ 
+ (vs', - v~)2])10.z.~ and etc. The averaging procedure is as follows: 

( ( u ; o  - u~, ) (Vs , j  - v~,))10,~,,  - 
1 1 

2~z ~% 

fo 2~ dO f I z  dz fO"(u~i/- usl)(vsij- Gi)dqo 

I I Z dz 

[ 3 5 ]  

Following this and dropping the cumbersome calculations (Hussainov et al. 1995), the formulae 
(in complete form) for different stress tensor components are presented in appendix B. These values 
depend strongly on the angle ~0~ of the averaging procedure, which is determined as 

qOq = arctg 
Usi ldsj /] 

blsi blsj ] 

[361 

For the definition of pseudo-viscosity coefficients, let us multiply the obtained components of the 
stress tensor with the time of the inter-particle collision At. This time was determined by Marble 
(1964) and calculated in (Hussainov et  al.  1995) through the probability of the particle collision. 
In the simplest case of  the particle binary collision the probability of collision of a particle from 
the ith fraction with particles from other fractions can be obtained according to Trushin and 
Lipatov (1963) as follows: 

(& + 6J)2 [37]  Po - 4 l~ ' 

where l~ is the inter-particle distance for the ith particle fraction, which is determined by knowing 
the particle mass concentration ~t as 

~t 3 / /rp 
1, = ~/ 6pp~," 

Estimating the probability of collision as at least one collision in the volume of 1 cm 3 during the 
time interval of  1 s, Trushin and Lipatov (1963) determined the probability of  collision through 
geometrical parameters as a ratio of the cross-section of colliding particles to the square of 
inter-particle distance [37]. Sommerfeld and Zivkovic (1992) and later Sommerfeld (1995) 
determined the probability of collision, which obeys to the Poisson's distribution function. In both 
cases the probability of  particle collision is small being about 0.01. Neglecting the cumbersome 
calculations and using the expressions 

, _ , 2 <(vb vs,)2>[o.z.~At, (Vsi- <(uso -- u~t)(v~o-  vsi)>lo.z.~At, v~i = - 

vie = ((ogo - cos,)(v;o - vs,))lo.~.~At, Ds, = [((us~- us,) 2) + ((vs~j - vO2)]10.z.~At), 

we can write these pseudo-viscosity coefficients for three particle fractions (i = 1, 3, j = 1, 3) and 
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four transport equations k = 1, 4 as follows: 

±& Vs ~, = go (v ,  + 5 ) 6 j ~ ,  
j= IdCi 3N/O~ j 

[381 

where the coefficient 

g 0 ~  3 

N/ 6p 

and 

f l j l -  mvJ 
mpi -~- mw 

is the ratio of the single particle mass to the total mass of colliding particles; k = 1, 4. Then the 
coefficients X~ can be defined (in the complete form) in appendix C. Furthermore, we designate 
the pseudo-diffusion coefficient for various particle fractions as Ds~ = v4~. 

The expression for the parameter ksi, which characterizes the exchange of kinetic energy at 
particle collision (the gain and loss of energy at the moment of the particle impact) can be obtained 
by multiplying the quadrate of the fluctuating velocity difference ([(u'i~- us~)2 + ( v ~ -  vs~)2])[o.~ 
(written in appendix A) to the probability of the particle collision [37], i.e. the probability of the 
collision of particles from the ith fraction with the particles from other particle fractions (j = 1, 3 
and j ¢ i). The expression written for each particle fraction k~ is as follows: 

3 

ks, = Z B~(Vi + Vj)2Pi~Yo, [391 
j=lff4, i 

where the coefficients Yo are presented in appendix C. The restitution coefficient knp is the coefficient 
relating the normal velocity component after collision to that before the collision and the friction 
coefficient kip is the coefficient relating the tangential velocity component after collision to that 
before the collision, are introduced in the formula for recalculation of the translation and angular 
velocities after particle collision described by Babukha and Shraiber (1972). In our calculation the 
restitution coefficient is taken (for all flow conditions) as knp = - 1  and the friction coefficient is 
taken as ktp = 0.31. 

Thus, according to the expressions of the obtained pseudo-viscosity coefficients, they take into 
account the properties of the flow expressed through linear and angular particle velocities and 
particle mass concentration, the relaxation parameters of particles (their size and material density) 
and the parameters of collision (the restitution and friction coefficients). 

6. RESULTS AND DISCUSSION 

The calculations of the two-phase turbulent pipe-jet flow were conducted to describe the 
peculiarities of the distributions of the particle mass concentration. They are expressed by various 
profiles of mass concentration in the cross-sections of a pipe and also by the pinch-effect of the 
distribution of solid admixture in the turbulent round jet observed for fine solid particles. The 
numerical results were compared with the experimental data obtained in our laboratory for various 
flow conditions: different sizes of electrocorundum (pp = 3950 kg/m 3) particles (6 = 7-32 pm), two 
pipe diameters (D = 15.2 and 35 mm), two mean velocities of the gaseous phase (u = 30 and 50 m/s) 
and two mass loadings (0.34 and 0.62 kg dust/kg air). According to our investigations, the criterial 
Stokes number satisfies the condition Stk, < 3. Such motion of fine solid particles is accompanied 
by the anomalous distribution of particle mass concentration (pinch-effect) in the jet. Here, the 
Stokes number is determined as 

2pp 
Stk, = ~ ~'2Re,, 
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Figure 5. Distribution of particle mass concentration in various cross-sections of the pipe (flow conditions 
are the same as in figure 4.): --, x/D = 0; - - -, x/D = 25; - - - ,  x/D = 100; --, x/D = 200; F-I, c~ (exp.). 

the relative particle diameter is 5 = 6/D and the Reynolds number  determined via the friction 
velocity u ,  is calculated as Re ,  = v,D/2v.  Hussainov et al. (1996) found that  for the Stokes 
numbers  larger than 3, the mot ion  of  solid particles in a pipe is characterized by the substantial 
velocity lag. For  such mot ion  in a pipe, the scattering effect expressed by the intensive dispersion 
o f  solid particles in the initial stage o f  the two-phase jet, has been found by Laats and Fr ishman 
(1970) and by N a v o z n o v  et al. (1979). 

The profiles o f  relative particle mass concentra t ion (related to its value at the pipe axis) and the 
velocities o f  the dispersed phase (in the dimensionless form) in the cross-section located 
downst ream (at the length o f  200 pipe diameters) are shown in figure 4 for the mot ion  of  23 y m  
particles. The numerical results were compared  with the experimental data  obtained by Navoznov  
et al. (1979). It is shown that  the profile o f  the particle mass concentra t ion is non-uni form in the 
cross-section and has the maximum at the pipe axis. The t ransformat ion of  the distribution of  
relative particle mass concentra t ion in various cross-sections o f  the pipe (0, 25, 100 and 200 pipe 
diameters) is presented in figure 5 while the numerical results are compared  with the experimental 
data  for the pipe outlet. It can be seen that  the uniform distribution o f  mass concentra t ion obtained 
in the calculations for the initial cross-section (bold solid line) changes and becomes non-uniform 
across the pipe in fully developed, steady flow (thin solid curve in figure 5). At  the non-steady flow 
region (25 pipe diameters downstream),  the wavy distribution o f  particle mass concentra t ion can 
be observed (the dashed curve). The distribution o f  particle velocities obtained f rom the numerical 
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Figure 6. Distribution of particle velocity in various cross-sections of the pipe (flow conditions are the 
same as in figure 4.): --, x/D = 0; - - -, x/D = 25; --, x/D = 200; I ,  m(r)/us(O) (exp.). 
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Figure 7. Distribution of particle mass concentration and the gas velocity in the cross-section of the pipe 
outlet (x/D = 200) for the following flow conditions: the mean velocity of gas u = 50 m/s, the pipe 
diameter D = 35 mm, the particle size 6 = 17 #m, the mass loading of 0.34 kg dust/kg air: - - ,  ct (calc.); 

Fq, ~t (exp.); - - ,  u(r)/u(O) (calc.); I I ,  u(r)/u(O) (exp.). 

calculations in various cross-sections of the pipe are presented in the dimensionless form in figure 6 
and compared with the experimental data. In the calculations the initial distribution of particle 
velocity was taken uniform making 15% of the gas velocity at the axis. Fine particles are accelerated 
in the non-steady region of the pipe flow up to reaching the velocity of the gaseous phase where 
the particles move almost without any velocity lag in fully developed, steady flow. Thus, together 
with the changes in the distribution of the particle velocity along the pipe, the profiles of particle 
mass concentration are also transformed from the uniform distribution in the initial cross-section 
of the pipe to the non-uniform distribution in fully developed, steady region (thin curve in figure 5). 
The distribution of relative particle mass concentration and the velocity of the gaseous phase at 
the distance of 200 pipe diameters from the initial cross-section of the pipe are shown in figures 7 
and 8 for other flow conditions: the motion of 17 and 32/tm particles in a pipe with the larger 
diameter of 35 mm, the mass loading of 0.34 kg dust/kg air and for the mean velocity of gas 50 m/s. 
The numerical results have been compared with the experimental data by Laats and Frishman 
(1970). The distributions of relative mass concentration at the cross-section of the pipe outlet for 
three sizes of particles: 7, 17 and 32/~m in a pipe with the diameter of 35 mm are shown in figure 9. 
As the experiments show, the motion of such fine particles has no velocity slip between the 
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Figure 8. Distribution of particle mass concentration and the gas and particle velocity in the cross-section 
of the pipe outlet (x/D = 200) (flow conditions are the same as in figure 7) for the particle size ~ = 32 #m: 

- - ,  ~t (calc.); Fq, ~ (exp.); - - ,  u(r)/u(O) (calc.); m, u(r)/u(O) (exp.); - - - ,  u~(r)/m (0) (calc.). 
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Figure 9. Distr ibution of  particle mass  concentrat ion for various particle sizes in the cross-section of  the 
pipe outlet (x/D = 200) (flow condit ions are the same as in figure 7): - - ,  6 = 7/~m; - - ,  6 = 17/~m 

(calc.), I I ,  (exp.); - - - ,  6 = 32 # m  (calc.), D ,  (exp.). 

gaseous and dispersed phases. The analysis of the distributions of the relative particle mass 
concentration in the pipe shows two regimes for the two-phase turbulent motion in these flows: 
the two-phase flow with very fine particles when Stk,  < 1 (6 = 7, 17/~m), and the two-phase flow 
with fine particles of larger sizes for 1 < Stk,  < 3 (6 = 23, 32 #m). The upper limit for the Stokes 
number corresponds to the motion of large particles with the velocity slip in fully developed, steady 
flow in a horizontal channel (Hussainov et al. 1996). Two different regimes of the two-phase flow 
carrying fine solid particles are characterized by noticeably different distribution of mass 
concentration of solid admixture in the cross-section of  a pipe. For  the motion of very fine solid 
particles (6 = 7, 17/~m) when Stk,  < 1 the profile of the relative mass concentration is non-uniform 
with the maximum value near the wall. On the contrary, for the motion of fine solid particles with 
larger sizes (23, 32 ~m) when 1 < Stk,  < 3, the profile of the relative mass concentration is 
non-uniform with the maximum value at the axis of the pipe. The analysis of force factors acting 
on the motion of solid particles in a pipe shows a significant role of the Saffman lift force, which 
depends on the velocity gradient 8u/Sr and velocity lag u - u~. This force dominates substantially 
near the wall resulting in the non-uniform distribution of concentration. 

Now let us consider the velocity distribution of both phases, and the relative particle mass 
concentration in a two-phase turbulent round jet flowing out from the same pipe with the initial 
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Figure 10. Distr ibution of  particle mass concentrat ion and the particle velocity along the axis of  the 
two-phase jet for the following flow conditions: the mean velocity of  gas at the pipe outlet u = 50 m/s, 
the pipe diameter D = 15.2 ram, the particle size 6 = 23 #m,  the mass loading of  0.62 kg dust /kg air: 
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Figure 11. Distribution of particle mass concentration in the cross-section of the two-phase jet x/D = 10 
(flow conditions are the same as in figure 10): --, ~(r)/~(0) (calc.); ---,  u(r)/u(O) (calc); --, m(r)/us(O) 

(calc.); F1, ct(r)/ct(O) (exp.); II, us(r)/u,(O) (exp.). 

distributions of these parameters obtained in the cross-section of the pipe outlet (200 pipe diameters 
from the inlet). The distribution of relative particle mass concentration and particle velocities in 
a two-phase jet along its axis and in three different cross-sections for the particles of 23 #m flowing 
out from the pipe with the diameter of 15.2 mm for two flow conditions, i.e. for two mean velocities 
of the outflow gas (30 and 50 m/s) are shown in figures 10-15. The numerical results have been 
compared with the experimental data obtained by Navoznov et al. (1979). The distribution of 
relative particle mass concentration and velocity of the dispersed phase along the axis for the 
particles of 23 #m with the mean outflow velocity of 50 m/s are shown in figure 10. At the distances 
of 10-15 pipe diameters from the pipe outlet the pinch-effect has been observed. Figure 10 shows 
that after the accumulation of admixture on the axis of the jet, which takes place approximately 
at 12 pipe diameters downstream, fading of the concentration begins, which proceeds downstream 
the jet. The distribution of the same flow parameters is shown in figure 14, but for other flow 
conditions, where the outflow velocity from the pipe is 30 m/s. It can be seen that as in the previous 
case, the pinch-effect in a two-phase round jet can satisfactorily be described by our model. As 
in the previous case, the intensive dispersion of particles in cross-sections is observed immediately 
after the concentration peak in the jet. The calculated profiles of the particle mass concentration 
and the velocity of the gaseous and dispersed phases in three cross-sections of the jet (at the distance 
of 10, 16 and 25 pipe diameters) for 23/tm particles flowing out with the mean velocity of the carrier 
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Figure 12. Distribution of particle mass concentration in the cross-section of the two-phase jet x/D = 16 
(flow conditions are the same as in figure 10): --, ~(r)/~(0) (calc.); ---,  u(r)/u(O) (calc); --, us(r)/u~(O) 

(calc.); O, c¢(r)/~(0) (exp.); II, u~(r)/u~(O) (exp.). 
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Figure 13. Distribution of particle mass concentration in the cross-section of the two-phase jet x/D = 23 
(flow conditions are the same as in figure 10): --, c¢(r)/~(0) (calc.); ---, u(r)/u(O) (calc); --, u~(r)/u~(O) 

(calc.); Fq, o¢(r)/~(O) (exp.); II, u~(r)/u~(O) (exp.). 

fluid of  50 m/s are shown in figures 11-13. The distribution o f  the same parameters in the one 
cross-section o f  the jet (at the distance 16 pipe diameters), but  for other  mean outflow velocity o f  
the carrier fluid o f  30 m/s is given in figure 15. The numerical results have been compared  with 
the experimental data. One can see that  the profiles o f  particle mass concentra t ion in the 
cross-section o f  10 and 16 pipe diameters are narrower  than the profiles in the cross-section of  the 
jet being located further downst ream at 23 pipe diameters f rom the outlet o f  the pipe. This indicates 
a connect ion between the growth of  particle mass concentra t ion along the axis of  the jet and 
narrowing of  the jet boundary  downst ream that speaks in favour  o f  the existing o f  the pinch-effect. 

The distribution o f  relative mass concentra t ion along the axis for the particles o f  23 p m  is shown 
in figure 16 for the case where all the force factors (the drag force and the Magnus  and Saffman 
lift forces), the polydispersity factor  (the inter-particle collision) and the turbulence impact  on the 
fluctuating mot ion  of  particles are included (bold curve in the figure). In this figure thin curve 
corresponds to the distribution o f  the mass concentra t ion for the special case when the influence 
o f  the turbophoresis  force is neglected. The bold dashed curve is related to the mot ion  of  fine 
particles when the inter-particle collision is neglected and the thin dashed curve is related to the 
mot ion  when the both  two factors: the turbophoresis  force and inter-particle collisions are 
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Figure 14. Distribution of particle mass concentration and the particle velocity along the axis of the 
two-phase jet for the following flow conditions: the mean velocity of gas at the pipe outlet u = 30 m/s, 
the pipe diameter D = 15.2 mm, the particle size 6 = 23 #m, the mass loading of 0.62 kg dust/kg air: 
-- ,  ~(x)/ ~¢(x = 0) (calc.); 1--1, ~(x)/~(x = 0) (exp.); --, us(x)/u,(x = 0) (calc.); II, m(x)/u~(x = 0) (exp.). 
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Figure 15. Distribution of particle mass concentration in the cross-section of the two-phase jet x/D = 16 
(flow conditions are the same as in figure 14): - - ,  ct(r)/ct(O) (calc.); - - - ,  u(r)/u(O) (calc); - - ,  us(r)/ujO) 

(calc.); I-q, ct(r)/~(O) (exp.); II ,  u~(r)/uJO) (exp.). 

neglected. But the influence of the lift forces--the Magnus and Saffman forces is still present. The 
perceptible growth of  particle mass concentration along the jet axis in two last cases is stipulated 
by the substantially non-uniform distribution of particle mass concentration at the outlet of the 
pipe. The latter is characterized by the maximum value, which is located in the middle of the pipe 
radius and shows decrease towards the axis and towards the wall (figure 17). The conventional signs 
are the same in figures 16 and 17. Such distribution of particle mass concentration in the pipe was 
obtained for the same force factors as in the jet, i.e. neglecting the inter-particle collision as well 
as the influence of both factors together: the turbophoresis force and inter-particle collisions. As 
the comparison of numerically obtained profiles of mass concentration in a pipe with the 
experimental data for these two cases shows, the calculated distributions are substantially different 
from the experimental results. Due to the turbophoresis force as well as lift forces, such a 
distribution of  the particle mass concentration in a pipe (bold and thin dashed curves in figure 17) 
will be re-distributed in the jet. The result is an impressive growth of the mass concentration along 
the jet axis (bold and thin dashed curves in figure 16). So, taking all the force factors together we 
can obtain the relevant distribution of particle mass concentration adequately describing the 
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Figure 16. Distribution of particle mass concentration along the axis of the two-phase jet for the following 
flow conditions: the mean velocity of gas at the pipe outlet u = 50 m/s, the pipe diameter D = 15.2 mm, 
the particle size 6 = 23/~m, the mass loading of 0.62 kg dust/kg air: - - ,  ~(x)/~(x = 0) (calc., including 
of all force factors); I-1, ~(x)/ct(x = 0) (exp,); - - ,  ~ (calc., neglect the influence of the turbophoresis force); 
- - -, ct (calc., neglect the influence of inter-particle collisions); - - -, ~ (calc, neglect the influence of the 

turbophoresis force and inter-particle collision, i.e. the explicit influence of the lift forces). 
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Figure 17. Distribution of  particle mass  concentration at the pipe outlet for different force factors 
(indications on the figure and flow conditions are the same as in figure 16). 

pinch-effect. As the numerical calculations show, the main reason for the pinch-effect is the 
turbophoresis force since neglecting of this force brings to the fading of particle mass concentration 
along the whole length of the jet (thin curve in figure 16). This force results from by both the 
non-uniform distribution of the turbulent energy at the initial cross-section of the jet flow and the 
inter-particle collisions. These factors and the Saffman lift force can initiate the motion of particles 
towards the jet axis, causing the radial migration of solid particles. The turbophoresis force 
included in the transport equation of the momentum of the dispersed phase in the radial direction 
at jet expansion is 

Ft = ps AArl ~rl rl((v~'2> + k,). 

The second term in this expression connected with the parameter k~ is the force factor initiated 
by the inter-particle collision, which is similar to the turbophoresis force caused by the flow 
turbulence. It appears from writing the expression for the normal component of the stress tensor 
for the dispersed phase [22]. The distribution of the pseudoviscosity diffusion coefficient originated 
from the inter-particle collision Ds and the coefficient of the turbulent diffusion of particles Dp in 
the cross-section of the pipe outlet and in the jet at 23 pipe diameters from the outlet of the pipe 
are shown in figures 18 and 19, respectively. These values are presented in the dimensionless form 
related to the coefficient of the kinematic viscosity of gas for the pipe flow and to the coefficient 
of the turbulent viscosity of gas for the jet flow. As it is shown, the distributions of these values 
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Figure 18. Distribution of  the pseudoviscosity diffusion coefficient ( - - ,  D,/v) and the coefficient of  the 
turbulent diffusion of particles ( - - ,  Dp/v) along the radius of  the pipe at its outlet (flow conditions are 

the same as in figure 16). 
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Figure 19. Distribution of pseudoviscosity diffusion coefficient ( - - ,  D+/v,) and the coefficient of  the 
turbulent diffusion of  particles ( - - ,  Dp/v,) in the cross-section of  the two-phase jet x/D = 23 (flow 

conditions are the same as in figure 16). 

in the cross-sections of a pipe and jet flows, the influence of the inter-particle collision prevails over 
the turbulent diffusion of particles in the pipe near the wall. On the other hand, the influence of 
the turbulent diffusion of particles in the jet prevails over the inter-particle collision, increasing the 
influence of the turbophoresis force and resulting in the pinch-effect in the two-phase turbulent jet. 
The numerical calculations were also performed to describe the pinch-effect observed earlier in the 
experiments of Laats and Frishman (1970) when this effect was observed by using a different 
measurement technique (by isokinetic tubes). They defined the growth of the flow rate of particle 
mass as g+ = p~u+ = p~us (here p+ is density of the dispersed phase) along the axis instead of the 
value of particle mass concentration 7 in the experiments of Navoznov et al. (1979). The numerical 
calculations were performed for three flow conditions: for the motion of particles of the sizes of 
7, 17 and 32/tm by flowing out from the pipe with the larger diameter of 35 mm and for the mean 
gas outflow velocity of 50 m/s. The numerical results were compared with the experimental data 
obtained in our laboratory by Laats and Frishman (1970) and described the pinch-effect in that 
case as well. 

In principal, the purpose of the given investigations is to describe the anomalies in the 
distribution of particle mass concentration in the pipe-jet flow. The performed calculations showed 
the existence of the pinch-effect in the jet and various profiles of the distribution of particle mass 
concentration in the cross-section of the pipe (figures 7-9). However there were the differences 
between the numerical and experimental results. For example, this can be seen in the distribution 
of concentration in the pipe (figure 4) or along the axis of the jet (figures 10, 14). In our simulation 
we used the semi-empirical model elaborated by Shraiber et al. (1990) where we could describe the 
turbulent diffusion of particles. Unfortunately, we could not, for example, adequately describe the 
distribution of concentration in the development stages of the jet by this model. This is due to the 
selection of numerical constants in the semi-empirical model of Shraiber et al .  (1990). The further 
improvements can be the following: 

(1) verification of the empirical constants of the model (Shraiber et al. 1990), or using other 
models describing the turbulent diffusion and two-way coupling effects for the motion of fine 
particles in the pipe-jet flow; 

(2) more accurate calculations of the inter-particle collision (introducing a greater number of 
particle fractions), which can show the stronger effect and thus give the better description of 
experimental data. 

7. CONCLUSION 

(1) The results of the numerical simulation of the pinch-effect for the distribution of the solid 
admixture concentration in the two-phase round submerged jet carrying fine solid particles 
discovered at the beginning of 1970s and not been satisfactorily explained are given now. 
IJMF 23/4-G 
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(2) Since the reasons resulting in the distribution anomalies of the particle mass concentration 
have not been known, the presented model takes into account the influence of all factors, which 
can cause such distributions in real dispersed flows: the polydispersity, the two-way coupling 
processes, the Magnus and Saffman lift forces, the turbophoresis force and the particle interaction 
with the wall and with each other. 

(3) Special attention was paid to the influence of the admixture polydispersity since the real 
manufactured powders are polydispersed. The model of the closure of transport equations of the 
dispersed phase based on the inter-particle collisions was elaborated. It is indicated that with 
neglecting the inter-particle collisions and the influence of the turbophoresis force, the anomalous 
distributions of particle mass concentration in the pipe and jet flows cannot be described. 

(4) By the given model the motion in a two-phase pipe-jet flow was calculated. This allowed to 
set the initial boundary conditions to the two-phase jet, including the initial distribution of the 
parameters, which do not respond to the direct experimental measurements properly. 

(5) The calculation results have been compared with the experimental data obtained by the 
authors for various flows, using different experimental techniques. The numerical results describe 
satisfactorily the parameters of both phases in a pipe and a jet, including the anomalous 
distributions. 

Acknowledgements--The given work was supported by a Grant of the Joint Program of the Government of 
Estonia and the International Science Foundation No. LK 6100. The authors are grateful to Mr Tisler for 
his help in designing and typing this manuscript. 

REFERENCES 

Abramovich, G. N. (1970) The effect of an admixture of solid particles or droplets on the structure 
of turbulent gas jet. Soviet Phys. Dokl. 190, 1052-1055 (in Russian). 

Abramovich, G. N., Bazhanov, V. I. and Girshovich, T. A. (1972) Turbulent jet with heavy 
admixtures. Notices of the Academy of Sciences of the USSR, Series Mekhanika zhydkosti i gaza 
6, 4149 (in Russian). 

Abramovich, G. N., Girshovich, T. A., Krasheninnikov, S. Yu., Sekundov, A. N. and Smirnova, 
I. P. (1984) Theory of Turbulent Jets. Nauka, Moscow (in Russian). 

Babukha, G. L. and Shraiber, A. A. (1972) Interaction of Particles of Polydispersive Material 0l 
Two-phase Flows. Naukova Dumka, Kiev (in Russian). 

Brailovskaja, I. Yu. and Chudov, L. A. (1962) Solution of the equations of the boundary layer 
by the difference method. In Numerical Methods and Programming, Part 1, pp. 167 182. 

Chapman, S. and Cowling, T. G. (1970) The Mathematical Theory of Non-uniform Gases, 3rd edn. 
Cambridge University Press, Cambridge. 

Crowe, C. T., Sharma, M. P. and Stock, D. E. (1977) The particle-source-in-cell (PSI-CELL) for 
gas droplet flows. J. Fluids Engr. 99, 325-332. 

Durst, F. and Rastogi, A. K. (1977) Calculations of turbulent boundary layer flows with drag 
reducing polymer additives. Phys'. Fluids' 20, 1975-1985. 

Elghobashi, S. E. and Abou-Arab, T. W. (1983) A two-equation turbulence model for two-phase 
flows. Phys. Fluids 26, 931-938. 

Fletcher, R. D. (1967) Suspension stratification in the atmosphere. Phys. Fluids" Suppl. 9, 223 385. 
Fortier, A. (1967) Mechanique des suspensions. Masson et Cie, Paris. 
Frishman, F., Kartushinsky, A. and Shcheglov, I. (1993) Diffusion anomalies of solid particles in 

turbulent flows. Proc. Estonian Acad. Sci. Phys. Math. 42, 242-250. 
Gorbis, Z. R. Spokoinyi, F. E. (1977) Physical model and mathematical description of the process 

of fine particle motion in turbulent gas suspension flow. Teplofizika Vysokikh Temperatur 15, 
399-408 (in Russian). 

He, J. and Simonin, O. (1993) Non-equilibrium prediction of the particle-phase stress tensor in 
vertical pneumatic conveying. EDF Report HE-44, Vol. 15, pp. 1-24. 

Hetsroni, G. and Sokolov, M. (1971) Distribution of mass, velocity and intensity of turbulence in 
a two-phase turbulent jet. Trans. ASME J, Appl. Mech. 38, 315-327. 



TWO-PHASE TURBULENT PIPE-JET FLOW 789 

Hussainov, M., Kartushinsky, A., Mulgi, A. and Rudi, U. (1995) Experimental and 
theoretical study of the distribution of mass concentration of solid particles in the 
two-phase laminar boundary layer on a flat plate. Int. J. Multiphase Flow, 21, 
1141-1161. 

Hussainov, M., Kartushinsky, A., Mulgi, A. and Rudi, U. (1996) Gas-solid flow with the slip 
velocity of particles in a horizontal channel. J. Aerosol Sci. 27, 41-59. 

Jenkins, J. T. and Savage, S. B. (1983) A theory for the rapid flow of identical, smooth, nearly 
elastic, spherical particles. J. Fluid Mech. 130, 187-202. 

Kartushinsky, A. I. (1984) Transfer of inertial admixture in two-phase turbulent jet. Izv. Akad. 
Nauk SSSR Mekh. Zhidk, Gasa 4, 36-41 (in Russian). 

Kohnen, G., Riiger, M. and Sommerfeld, M. (1994) Convergence behavior for numerical 
calculations by the Euler/Lagrange method for strongly coupled phases. International Symposium 
Numerical Methods for Multiphase Flows, ASME FED Vol. 185, pp. 191-202. 

Kravtsov, M. V. (1968) Drag to the free steady motion of a sphere in the viscous medium. J. Engng 
Phys XV, 464--470 (in Russian). 

Kramer, T. J. and Depew, C. A. (1972) Experimentally determined mean flow characteristics of 
gas-solid suspensions. Transactions of the ASME, Journal of Basic Engineering, Ser. D 2, 
254-262. 

Krasheninnikov, S. Yu. (1972) Of calculation of the axisymmetrical swirling turbulent jets. Izv. 
Akad. Nauk SSSR Mekh. Zidk, Gasa 3, 71-80 (in Russian). 

Kulick, J. D., Fessler, J. R. and Eaton, J. K. (1994) Particle response and turbulence modification 
in fully developed channel flow. Journal Fluid Mechanics 277, 109-134. 

Laats, M. K. and Frishman, F. M. (1970) Assumptions used for the calculation of the two-phase 
turbulent jet. Izv. Akad. Nauk SSSR Mekh. Zhidk, Gasa 2, 186-191. 

Laats, M. K. and Frishman, F. M. (1973) The development of the methods and investigation of 
turbulence intensity at the axis of two-phase turbulent jet. lzv. Akad. Nauk SSSR Mekh. Zhidk, 
Gasa 2, 153-157. 

Lee, S. L. and Durst, F. (1982) On the motion of particles in turbulent duct flow. Int. J. Multiphase 
Flow 8, 125-146. 

Louge, M. Y., Mastorakos, E. and Jenkins, J. T. (1991) The role of particle collisions in pneumatic 
transport. Journal Fluid Mechanics 231, 345-359. 

Marble, F. E. (1964) Mechanism of particle collision in one-dimensional dynamics of gas-particle 
admixture. Phys. Fluids 7, 1270-1282. 

Mednikov, Ye. P. (1981) Turbulent Transfer and Precipitation of Aerosols. Nauka, Moscow (in 
Russian). 

Mei, R. (1992) An approximate expression for the shear lift force on a spherical particle at finite 
Reynolds number, lnt. J. Multiphase Flow 18, 145-147. 

Melville, W. K. and Bray, K. N. C. (1979) A model of the two-phase turbulent jet. Int. J. Heat 
Mass Transfer 22, 647-656. 

Melville, W. K. and Bray, K. N. C. (1979) The two-phase turbulent jet. lnt. J. Heat Mass Transfer 
22, 279-287. 

Navoznov, S. I., Pavel'ev, A. A., Mulgi, A. S. and Laats, M. K. (1979) Effect of initial slip on 
admixture dispersion in two-phase jet. In Turbulent Two-phase Flows, pp. 149-157. Tallinn, 
Moscow (in Russian). 

Nigmatulin, R. I. (1990) Dynamics of Multiphase Media, Vol. 1. Hemisphere, New York. 
Patankar, S. (1980) Numerical Heat Transfer and Fluid Flow. Hemisphere, New York. 
Rubinow, S. I. and Keller, J. B. (1961) The transverse force on a spinning sphere moving in a 

viscous fluid. J. Fluid Mech. 11, 447--459. 
Shraiber, A. A., Yatsenko, V. P., Gavin, L. B. and Naumov, V. A. (1990) Turbulent Flows in Gas 

Suspensions. Hemisphere, New York. 
Sommerfeld, M. (1992) Modelling of particle-wall collisions in confined gas-particle flows, lnt. J. 

Multiphase Flow 18, 905-926. 
Sommerfeld, M. and Zivkovic, G. (1992) Recent advances in the numerical simulation of pneumatic 

conveying through pipe systems. In Computational Methods in Applied Science, pp. 201-212. 
Elsevier, Amsterdam. 



790 F. FRISHMAN et al. 

Sommerfeld, M. (1995) The importance of inter-particle collisions in horizontal gas-solid channel 
flows. Gas-Particle Flows. ASME, FED 228, 335-345. 

Trushin, G. I. and Lipatov, N. N. (1963) The probability of collision of the suspended particles 
in their orientated motion. Izv. Vizshih Uchebnih Zavedeni. Pischevaya, Technologiya 5, 110-114 

(in Russian). 
Tsuji, Y., Morikava, Y. and Shiomi, H. (1984) LDV measurements of an air-solid two-phase flow 

in a vertical pipe. J. Fluid Mech. 139, 417-434. 
Vasilkov, A. I. (1976) Calculation of turbulent two-phase isobar jet. Izv. Akad. Nauk SSSR Mekh. 

Zidk, Gasa 5, 57-63 (in Russian). 
Yarin, L. P. and Hetsroni, G. (1994a) Turbulence intensity in dilute two-phase flows--1. Effect 

of particle-size distribution on the turbulence of the carrier fluid. Int. J. Multiphase Flow 20, 
1-15. 

Yarin, L. P. and Hetsroni, G. (1994b) Turbulence intensity in dilute two-phase flows--3. The 
particles-turbulence interaction in dilute two-phase flow. Int. J. Multiphase Flow 20, 27-44. 

APPENDIX A 

The velocity differences for the translational and angular velocities of the colliding two particles 
written in vector form are the following: 

V~ - V, = f12,{(1 - k~p)[e.(V2-V,)]e + 
(1 - -  k tp)~ 

(1 + ~) 

[ (&t°' + 62t°2).1} [A1] x (V2-V~) x e  2 ' 

V~ - V2 ~- - - f l l 2 ~ ( 1  - -  k n p ) [ e . ( V , - V l ) ] e  + (1 - k t p ) ~  e 
( - (1  + ~) 

[ LA21 x ( V 2 - V t )  x e  2 ' 

[A3] 

~11;--{,02= --J~12 l~'- ~ e  x ( V 2 - V , ) + t o 2 + ~ t o , -  e . t02+~e.o~ , [A4] 

The expressions [A 1]-[A4] for this particular case of two colliding particles are the generalized form 
of Chapman and Cowling (1970) and presented with taking into account the restitution and friction 
by Babukha and Shraiber (1972). 

The velocity differences presented in the Cartesian coordinates for the axial and radial velocity 
components and for the angular velocity component are the following: 

U21 - -  U l  = fl2l COS y~{(a -- cZ2)(V2 cos ~o -- g I - -  r 2 sin 9tgT,) -- cZ~I  -- Z 2 sin 0 

x [(V2 cos q~ - V0tg 7, + V2 sin q)] - d,2 [xfl  - Z2((V2 cos q0 
x / H +  ~ - 2 v, V~ cos q~ 

- V~)tg~,, + V2 sin ¢p)+ Z sin 0(V2 cos q~- VL- I/2 sin ~ptg7,)] ~, [A5] 
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v~ - v~ =/~z~ cos  ?~{(a - c z ~ ) ( ( V ~  cos  ~o - V,)tgy~ + I:2 sin q~) - c z x / 1  - Z 2 sin 0 

x (I:2 cos  ~o - V~ - I:2 sin o t g v , )  + dl2 [ x / 1  - -  z2(V2 cos  (p - -  VI 
, / ~ +  ~ -  2v, v~cos~o 

- V: sin q~tgT~) - Z sin 0 ( ( I : 2  cos  tp - G) tgT,  + I:2 sin q~)]~, 
J 

[A6] 

u(2 - u2 = - f l , 2  cos  ?~{(a - cZ2)(V2 cos  ~0 - V~ - I:2 sin ~ptgT~) - c z x / 1  - Z 2 sin 0 

x [(V2 cos  ~ - V,)tgT, + V2 sin ~0] d,2 [x/1 - zz((v2 cos  q~ 
~ / ~ +  ~ -  2v, v~cos~o 

- G)tgT~ + 1:2 sin ~0) + Z sin 0(I"2  cos  q~ - G - I:2 sin ~otg7,)]~, 
J 

[A7] 

v(2 - v2 = -f l~2 cos  7~{(a - cZ2)((V2 cos  q~ - G)tgy~ + V2 sin ~0) - -  c;cx/1 - ~C 2 sin 0 

x [(1:2 cos  ~p - -  G - I:2 sin q~tgy,) + d]2 [x/1 - -  z2(V2 cos  (p  - -  VI 
~/w,+ w~ - 2v, v2cos ~o 

- V2 sin q~tgy,) - g sin 0((1:2  cos ~0 - G) tg7]  + V2 sin q~)]~, 
J 

[A8] 

c o ~ , -  co~ = - - ~  Z - x / ~  + ~ -  2 G V 2 c o s ~ o  s i n 0 -  (1 - Z2cos20)  , [A9] 

col2 - co2 - ~ L Z x / v r  + ~ - 2V, I/"2 cos  ~o sin 0 - (1 - ;(2 cos  2 0) , 

whe re  the  coeff ic ients  a re  

a = 1 - knp, 

a n d  the  ang le  is 

b - ( l  - k<p)~ c = a - -  b ,  d~2 - b (62co ,  + 620~2) 
(i + ~) ' 2 

U1  ,,=arctg( - -  

[A10] 

A P P E N D I X  B 

In  the  case  o f  the  b i n a r y  co l l i s ions  o f  pa r t i c l e s  o f  th ree  sizes the  coeff ic ients  a re  d e t e r m i n e d  as 

fo l lowing :  

P0 ~ = ( V , . +  ~)2  tg27; 1 ~ 1 + 1 - 2  q,. i -E4 
S : _ 2  ~o i l l  -~- 

sin 2 t P ~  _ k~ ~ 
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TWO-PHASE TURBULENT PIPE-JET FLOW 

s=i3-~ ( v ' -  ~)~ 4(a-b)L-~,,/~ sin~°° 1 - k ° c ° s ~ - 2  - +  k~ 

793 

d<° 1 d l - k~ COS2~ 

1~2 ~ 2  ~00 

--1-(2k~-l)ak,, ~/V,]Jo~']~'*'~ 1-kocossdqo+tg 7, 1+-~, 3 "'s" t 1 -  1-k~ J ) ]  

5(5a+ 7b)(f,co,+fjco]~(( 1 2da' ' + g sin ~oo'~ tgy, ~ sin~ + ~ ,] 
Vi ~ ")~oo 2 Vi \ V,+ 

x 1 5 ~  *° dq) + 1 + ~  1-k~ 
V'J'J° ~1 - -  k~ cos 2 4o2 

I - "-o '-'-'~ T ~  " ~ l l  c o s  ~,, 
- ~  1 -  f - ~  -/2tg~,)lj,--67- ° , [.31 

w h e r e  Po = PJ,, Ro = Rj, ,  S 0 = Sji, Tij = # , .  
The  stress  t ensor  c o m p o n e n t s  are d e t e r m i n e d  as: 

<(uso u s , ) ( v ; o  vs,)>lo,x,~ : - , 2 - ~o' ' - = - = / ~ J ~ , j ,  < (  so o~,,)(vgo - v,,)>lo,x,o = ~o 37 ,  --  flo'Po, <(v,o v,,)2>lo,,,, - -  2 go 

<[(u;o - u , , )  2 + (v;o - v , , ) q >  = / ~  f , j ,  

w h e r e  i = 1, 3; j - - -  1, 3 and i # j .  

A P P E N D I X  C 

X~={g,[(A~-Co)sin27~-B~cos27i]+g2Ro(Ducos27,-F~jsin23,~)+g3R2Isin27, 

~ = {g4Ao + &(2A~ sin 2 7t -- B,j sin 2y, -- C0 cos 27,) + g2Ro(Do sin 27t + F0 cos 27~) 

+gsR~.[Qo(1 + cos 2 7,) - Go cos 27~ + Ho sin 7,]}, [C2] 

3 _ _  X~ - {g,(Lu + M,jtgT,) + g6Ro(No.tgT, - 0o) + gTR~(Po - T,~tgT,)}, [C3I 

)(4 gsA ° + 2 = g9RoQu, [C4] 
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h q  
Ya = g , -  + ggR~ [C5] 

Q0 

and ~ = ~*,.; here the indices are determined as follows: i = 1, 3; j = 1, 3 and i =~ j. 
The coefficients are determined as follows: 

l ( a + b ' ]  2 (2a+3b)b b 2 1 (a_~_.b_) 2 ' 
g l=~k- - - -~ - - j ,  g z -  15 , g3=-i6,  g ' = 3  g s = 2 b ( a - b ) ,  

5 1 [ ( a 2 b  f a2 ] 3b' g6 = b(5a + 7b), g7 = b 2, g8 = ~ - -  -t- q-- b 2 , g9  : ~ - ,  

and other coefficients are determined as follows: 

( sin rP°'~'~ q~°(1 ~ 1 +  [C61 

Bo - E ~  V,~ c°s2 2//' [C7] 

C,, = ~ Vj q~_~0 (1 sin 2q~0"], [C8] 4 Vi E ° \ 2q)~j j 

2 V,(2 --  k~.) 
D,j = 1 -- 2 V,k 2 + 

4 ~ ( 1  -- k~)K ~ 2 ~  sin q~,j /1 qg;; 
3 V,k~E'; 3~'E'i X~ - k~ cos: 7 '  [C91 

( (  ')( t 1 + g , / l  - kg l - ~ c o s  2 v/  + _v, ~ - k~ c o s  -~ ~'-' 
Fo= ~$7 1 -- i ~2~,.]. 1 - - ~ i +  1 V, 1 + 2 

[ClO] 

~ q o ~ ( ~ \  l(x sinqo0" ] 2~/1 ~k~ [ t g ~  t~  . . . .  arctg/- - - ~ ,  J / ,  Go ~ +~ 1 + q~o J ~o,.,k~ \ x / 1 - k J ]  [C11} 

1 V? 1 - k~i cos ~- 1 
H0.= ~ , . s i n 2 ~ + ~  1 -  I n - f z - k ~  //Ei-5/, [C121 

k~ ~ / ' s i n  ~ol/ / (1 - k~)K°'~ ( (1 - 2k~) ~Vj'~, 
K, ,cos ' -~+ k~E" ,] 1+  3k,i ' 4 v ,  j [C13] 
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( M ~  - 3 E  o. (1 - -  k~) 15 1 - 

N o _  (P~ 
E ~ 

1 ~ sin ~']  

(, 
Vj sin 2 cp--~° 

2 
O~ - VIE# , 

[C14] 

[c15]  

[C16] 

, K ~ P~= 1 - ~ ) ~ +  1 +~, [C17] 

Ro=\ v,+v~ }' 

l l - -  k,j co~  T ]  

[c18]  

[C19] 

where 

- ~-~, [C20]  

v ,  = .,/us~ + v s~, K'J = ~o , ,/1- E ° = 1 - -  k o cos 2 q~ 
dO v 

and 

4 ~  
k~ - (v,. + vj) ~ 

are the total velocity of the dispersed phase, incomplete elliptic integrals of  the first and second 
type and modulus of these integrals, respectively. 

At asymptotic approximation for small angles q~ << 1 the formulae [C6]-[C20] transform into the 
following expressions: 

4 ' 
[C21] 

B 0. = 

V 2 

k~q~ 1 - - ~ . +  4Vi i  

2Ao 
[C22] 
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